
NWERC 2010
The 2010 ACM Northwestern Europe Programming Contest

The Problem Set

A Fair Division
B Free Goodies
C High Score
D Hill Driving
E Rankings
F Risk
G Selling Land
H Stock Prices
I Telephone Network
J Wormly

These problem texts are copyright by the NWERC 2010 jury. They are licensed under the
Creative Commons Attribution-Share Alike license version 3.0; The complete license text can
be found at: http://creativecommons.org/licenses/by-sa/3.0/legalcode
Contact us if you’d like to receive the LaTeX sources.

Problem A: Fair Division 1

A Fair Division

It’s your friend’s birthday, and you and some other people decided to buy him a copy of
StarCraft II, because who wouldn’t want to have that?

You agreed to divide the costs as fairly as possible. Since some of you have more money
available than others, you also agreed that nobody has to pay more than he can afford. Every
contribution will be a multiple of 1 cent, i.e., nobody can pay fractions of a cent.

Everybody writes down the maximum amount he is able to contribute. Taking into ac-
count these maximum amounts from everybody, you share the cost of the present as fairly as
possible. That means, you minimize the largest distance of the contributions to 1

n -th of the
total cost. In case of a tie, minimize the second largest distance, and so on. Since the smallest
unit of contribution is 1 cent, there might be more than one possible division of the cost. In
that case, persons with a higher maximum amount pay more. If there is still ambiguity, those
who come first in the list pay more.

Since you bought the present, it is your task to figure out how much everybody has to pay
(including you).

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test
case:

• One line with two integers p and n: the price of the present in cents (1 ≤ p ≤ 1 000 000)
and the number of people (2 ≤ n ≤ 100) who contribute to the present (including you).

• One line with n integers ai (1 ≤ ai ≤ 1 000 000), where ai is the maximum amount, in
cents, that the i-th person on the list is able to contribute.

Output

Per test case:

• One line with n integers: the amounts each person has to contribute according to the
scheme. If the total cost cannot be divided according to the above rules, the line must
contain “IMPOSSIBLE” instead.

Sample in- and output

Input Output

3
20 4
10 10 4 4
7 3
1 1 4
34 5
9 8 9 9 4

6 6 4 4
IMPOSSIBLE
8 7 8 7 4

Almost blank page

Problem B: Free Goodies 3

B Free Goodies

Petra and Jan have just received a box full of free goodies, and want to divide the goodies
between them. However, it is not easy to do this fairly, since they both value different goodies
differently.

To divide the goodies, they have decided upon the following procedure: they choose
goodies one by one, in turn, until all the goodies are chosen. A coin is tossed to decide who
gets to choose the first goodie.

Petra and Jan have different strategies in deciding what to choose. When faced with a
choice, Petra always selects the goodie that is most valuable to her. In case of a tie, she is
very considerate and picks the one that is least valuable to Jan. (Since Petra and Jan are good
friends, they know exactly how much value the other places on each goodie.)

Jan’s strategy, however, consists of maximizing his own final value. He is also very con-
siderate, so if multiple choices lead to the same optimal result, he prefers Petra to have as
much final value as possible.

You are given the result of the initial coin toss. After Jan and Petra have finished dividing
all the goodies between themselves, what is the total value of the goodies each of them ends
up with?

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test
case:

• One line with an integer n (1 ≤ n ≤ 1 000): the number of goodies.

• One line with a string, either “Petra” or “Jan”: the person that chooses first.

• n lines with two integers pi and ji (0 ≤ pi, ji ≤ 1 000) each: the values that Petra and Jan
assign to the i-th goodie, respectively.

Output

Per test case:

• One line with two integers: the value Petra gets and the value Jan gets. Both values
must be according to their own valuations.

4 Problem B: Free Goodies

Sample in- and output

Input Output

3
4
Petra
100 80
70 80
50 80
30 50
4
Petra
10 1
1 10
6 6
4 4
7
Jan
4 1
3 1
2 1
1 1
1 2
1 3
1 4

170 130
14 16
9 10

Problem C: High Score 5

C High Score

You’ve just been playing a video game in which you had to move a worm through a maze
using a joystick. You got the high score, and now you have to enter your name using this
joystick. This works as follows.

The initial name displayed on the screen is a string consisting only of ‘A’ characters. Ini-
tially the first letter of the string is selected. When you move the joystick forward, the selected
letter is changed to the letter that immediately follows it in the alphabet. When you move the
joystick backward, the selected letter is changed to the letter that immediately precedes it
in the alphabet. The alphabet wraps around, so the letter following ‘Z’ is ‘A’ and the letter
preceding ‘A’ is ‘Z’.

Moving the joystick left or right changes the selection one step to the left or right, respec-
tively. The selection also wraps around, so moving left when the first letter is selected will
select the last letter and vice versa.

Because you would like to spend as little time as possible on entering your name, you
want to know the smallest possible number of joystick moves needed to do this. Given the
name you want to enter, write a program that calculates the minimum number of moves
needed. You may assume that the length of the initial string is the same as the length of the
name that you want to enter. Furthermore, it does not matter which letter is selected at the
end of the process.

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test
case:

• One line with a string s (1 ≤ length(s) ≤ 1 000) consisting of uppercase letters: the
name that you want to enter.

Output

Per test case:

• One line with an integer: the minimum number of joystick moves needed.

Sample in- and output

Input Output

2
JEROEN
JAN

56
23

Almost blank page

Problem D: Hill Driving 7

D Hill Driving

You’re driving your car in the local hills and returning to your home town. You’d like to get
back as quickly as possible; however, you notice that you don’t have much fuel left. You know
the most efficient route to take. Some parts of this route go downhill, and some go uphill. The
different parts have different lengths and slopes. How quickly can you reach home with the
little fuel you have left?

We will assume a very simple model for the fuel consumption of your car. Fuel consump-
tion (per unit distance travelled) will increase linearly with your driving speed v. However,
there is an offset which depends on the slope s of the hill. For example, when going downhill
along a particular road, you might be able to go at 10 km/h without expending any fuel; on
the other hand, if you were travelling that same road uphill, you would expend fuel at the
same rate as if you were driving 10 km/h faster along a flat road. More specifically, the car’s
fuel consumption c in liters per kilometer is given by

c = max(0, α v + β s), (1)

where α is the standard fuel consumption rate on a flat road, v is your speed in km/h, s is the
slope of the road, and β is a positive constant. Acceleration and deceleration do not cost fuel
and can be done instantaneously.

Note that your car has a maximum (safe) speed which cannot be exceeded.

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test
case:

• One line with four floating point numbers α (0.1 ≤ α ≤ 100), β (0.1 ≤ β ≤ 100), vmax

(10 ≤ vmax ≤ 200) and f (0 ≤ f ≤ 50): the standard (flat road) fuel consumption rate of
your car, the slope factor, the maximum speed of your car in km/h, and the amount of
fuel you have left in liters, respectively.

• One line with an integer r (1 ≤ r ≤ 10 000): the number of road segments.

• r lines with two floating point numbers xi and yi (1 ≤ xi ≤ 1 000, −1 000 ≤ y ≤ 1 000)
each: the horizontal distance and height change (both in meters) of the i-th road seg-
ment. Each road segment has constant slope.

Output

Per test case:

• One line with a floating point number: the fastest time in hours in which you can reach
town. It is guaranteed that if it is possible to reach town at all, it will always be pos-
sible in less than 24 hours. If it is impossible to reach town, the line must contain
“IMPOSSIBLE” instead.

Your output should have a relative or absolute error of at most 10−6.

8 Problem D: Hill Driving

Sample in- and output

Input Output

3
10.0 1.0 150 0.0
1
100.0 -100.0
10.0 100.0 150 1.0
2
100 0
100 100
0.5 0.1 100 10
3
1000 0
100 10
100 -10

1.414214
IMPOSSIBLE
0.072120

Problem E: Rankings 9

E Rankings

There are n teams (labelled from 1 to n) who take part in a programming competition every
year, and at the end they are ranked in order of merit. The rankings for last year are known.
This year, the jury wants to make the event less competitive, and decides not to publish such a
ranking list (since teams near the bottom might get disheartened). Instead, they will produce
a complete list of pairs of teams whose relative rank order has changed from last year to this
year. For example, if team 13 placed above team 6 last year, but team 6 placed above team 13
this year, the pair (6, 13) is announced. This would enable teams to track their progress against
a particular opposing team, but not give them a clear sense of where they stand overall.

Of course, this isn’t going to stop your team from trying to determine the overall ranking
list. Given last year’s rankings and a complete list of the pairs of teams whose relative rank
order has changed, reconstruct as much of this year’s standings as possible. It is possible
that the jury might have made an error, so if the data given is inconsistent with any possible
ranking list for this year, you should also detect this.

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test
case:

• One line with an integer n (2 ≤ n ≤ 500): the number of teams.

• One line with n integers ti (1 ≤ ti ≤ n): the rankings for last year, from best team to
worst team. ti represents the team who came in position i (1-indexed) on the ranklist.
All the ti will be distinct.

• One line with an integer m (0 ≤ m ≤ 25 000): the number of pairs whose relative rank
order has changed.

• m lines with two integers ai and bi (1 ≤ ai < bi ≤ n) each: a pair of teams whose relative
rank order has changed. Each such pair will be mentioned exactly once.

Output

Per test case:

• One line with n integers: the rankings for this year, from best to worst, where the i-th
term (1-indexed) represents the team in position i. If this team cannot be determined
with certainty, the integer should be replaced with a ‘?’ character. If the data for a
particular test case is inconsistent with any possible ranking list for this year, the line
must contain “IMPOSSIBLE” instead.

10 Problem E: Rankings

Sample in- and output

Input Output

3
5
5 4 3 2 1
2
2 4
3 4
3
2 3 1
0
4
1 2 3 4
3
1 2
3 4
2 3

5 3 2 4 1
2 3 1
IMPOSSIBLE

Problem F: Risk 11

F Risk

Risk is a board game played on a world map. This world is divided into regions by borders.
Each region is controlled by a player (either you or one of your opponents). Any region that
you control contains a positive number of your armies.

In each turn, you are allowed to move your armies. Each of your armies may either stay
where it is, or move from a region to a bordering region under your control. The movements
are performed one by one, in an order of your choice. At all times, each region must contain
at least one army.

For strategic purposes, it is important to move your armies to regions that border your
opponents’ regions and minimize the number of armies on your regions that are totally sur-
rounded by other regions under your control. You want your weakest link, i.e., the border
region with the minimum number of armies, to be as strong as possible. What is the maxi-
mum number of armies that can be placed on it after one turn?

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test
case:

• One line with an integer n (1 ≤ n ≤ 100): the number of regions.

• One line with n integers ai (0 ≤ ai ≤ 100): the number of your armies on each region.
A number 0 indicates that a region is controlled by your opponents, while a positive
number indicates that it is under your control.

• n lines with n characters, where each character is either ‘Y’ or ‘N’. The i-th character
of the j-th line is ‘Y’ if regions i and j border, and ‘N’ otherwise. This relationship is
symmetric and the i-th character of the i-th line will always be ‘N’.

In every test case, you control at least one region, and your opponents control at least
one region. Furthermore, at least one of your regions borders at least one of your opponents’
regions.

Output

Per test case:

• One line with an integer: the maximum number of armies on your weakest border
region after one turn of moving.

12 Problem F: Risk

Sample in- and output

Input Output

2
3
1 1 0
NYN
YNY
NYN
7
7 3 3 2 0 0 5
NYNNNNN
YNYYNNN
NYNYYNN
NYYNYNN
NNYYNNN
NNNNNNY
NNNNNYN

1
4

Problem G: Selling Land 13

G Selling Land

As you may know, the country of Absurdistan is full of abnormalities. For example, the whole
country can be divided into unit squares that are either grass or swamp. Also, the country
is famous for its incapable bureaucrats. If you want to buy a piece of land (called a parcel),
you can only buy a rectangular area, because they cannot handle other shapes. The price of
the parcel is determined by them and is proportional to the perimeter of the parcel, since the
bureaucrats are unable to multiply integers and thus cannot calculate the area of the parcel.

Per owns a parcel in Absurdistan surrounded by swamp and he wants to sell it, possibly in
parts, to some buyers. When he sells a rectangular part of his land, he is obliged to announce
this to the local bureaucrats. They will first tell him the price he is supposed to sell it for. Then
they will write down the name of the new owner and the coordinates of the south-east corner
of the parcel being sold. If somebody else already owns a parcel with a south-east corner at
the same spot, the bureaucrats will deny the change of ownership.

Per realizes that he can easily trick the system. He can sell overlapping areas, because
bureaucrats only check whether the south-east corners are identical. However, nobody wants
to buy a parcel containing swamp.

In this example, dark squares represent swamp. Per may, for example, sell three overlapping grey
areas, with dimensions 2 × 1, 2 × 4 and 4 × 1 respectively. The total perimeter is 6 + 12 + 10 = 28.
Note that he can get more money by selling even more land. This figure corresponds to the case in
the sample input.

Now Per would like to know how many parcels of each perimeter he needs to sell in order
to maximize his profit. Can you help him? You may assume that he can always find a buyer
for each piece of land, as long as it doesn’t contain any swamps. Also, Per is sure that no
square within his parcel is owned by somebody else.

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test
case:

• One line with two integers n and m (1 ≤ n,m ≤ 1 000): the dimensions of Per’s parcel.

14 Problem G: Selling Land

• n lines, each with m characters. Each character is either ‘#’ or ‘.’. The j-th character
on the i-th line is a ‘#’ if position (i, j) is a swamp, and ‘.’ if it is grass. The north-west
corner of Per’s parcel has coordinates (1, 1), and the south-east corner has coordinates
(n,m).

Output

Per test case:

• Zero or more lines containing a complete list of how many parcels of each perimeter
Per needs to sell in order to maximize his profit. More specifically, if Per should sell pi
parcels of perimeter i in the optimal solution, output a single line “pi x i”. The lines
should be sorted in increasing order of i. No two lines should have the same value of i,
and you should not output lines with pi = 0.

Sample in- and output

Input Output

1
6 5
..#.#
.#...
#..##
...#.
#....
#..#.

6 x 4
5 x 6
5 x 8
3 x 10
1 x 12

Problem H: Stock Prices 15

H Stock Prices

In this problem we deal with the calculation of stock prices. You need to know the following
things about stock prices:

• The ask price is the lowest price at which someone is willing to sell a share of a stock.

• The bid price is the highest price at which someone is willing to buy a share of a stock.

• The stock price is the price at which the last deal was established.

Whenever the bid price is greater than or equal to the ask price, a deal is established. A buy
order offering the bid price is matched with a sell order demanding the ask price, and shares
are exchanged at the rate of the ask price until either the sell order or the buy order (or both) is
fulfilled (i.e., the buyer wants no more stocks, or the seller wants to sell no more stocks). You
will be given a list of orders (either buy or sell) and you have to calculate, after each order, the
current ask price, bid price and stock price.

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test
case:

• One line with an integer n (1 ≤ n ≤ 1 000): the number of orders.

• n lines of the form “order type x shares at y”, where order type is either “buy” or
“sell”, x (1 ≤ x ≤ 1 000) is the number of shares of a stock someone wishes to buy or
to sell, and y (1 ≤ y ≤ 1 000) is the desired price.

Output

Per test case:

• n lines, each of the form “ai bi si”, where ai, bi and si are the current ask, bid and stock
prices, respectively, after the i-th order has been processed and all possible deals have
taken place. Whenever a price is not defined, output “-” instead of the price.

16 Problem H: Stock Prices

Sample in- and output

Input Output

2
6
buy 10 shares at 100
sell 1 shares at 120
sell 20 shares at 110
buy 30 shares at 110
sell 10 shares at 99
buy 1 shares at 120
6
sell 10 shares at 100
buy 1 shares at 80
buy 20 shares at 90
sell 30 shares at 90
buy 10 shares at 101
sell 1 shares at 80

- 100 -
120 100 -
110 100 -
120 110 110
120 100 99
- 100 120
100 - -
100 80 -
100 90 -
90 80 90
100 80 90
100 - 80

Problem I: Telephone Network 17

I Telephone Network

A telephone company wants to build a new telephone network in a city. The company has
the goal that each person in the city should be able to call each other person. Of course, it is
not possible to build direct connections between every pair of persons. Instead, the company
uses a network made up of several layers.

We denote a network switch in layer j by S(j). A switch S(0) consists of one input, one
output and a cable connecting the input to the output. A switch S(j) with j > 0 consists of 2j

inputs, 2j outputs and two switches S(j − 1). Input i of S(j) (0 ≤ i < 2j) is connected via a
cable to the inputs i mod 2j−1 of each of the two switches S(j − 1). Similarly, output i of S(j)
is connected to the outputs i mod 2j−1 of each of the two switches S(j − 1).

j
2 −1

0

Inputs S(j) Outputs S(j)

S(j−1)

S(j−1)

The connections between a switch S(j) and the two switches S(j − 1) it consists of.

We are considering a network with one switch S(n) in the outermost layer. It can be
shown that any input and output of switch S(n) has a unique connection path to any of
the S(0) switches. Therefore, any input of S(n) can be connected to any of its outputs, and
the connection path is uniquely determined by specifying through which switch S(0) the
connection is established.

We number the switches S(0) belonging to the switch S(n) from 0 to 2n − 1. The i-th
switch S(0) is defined as follows. Write the number i in binary as bn−1bn−2 . . . b0. This defines
a path from an input of S(n) to the i-th switch S(0) via the following procedure: for each
j, bj = 0 indicates that the path extends from S(j + 1) to the first S(j) switch to which it is
directly connected, and bj = 1 indicates that the path extends to the second S(j) switch. Note
that regardless of which input of S(n) is selected, this path arrives at the same S(0) switch,
which is given the number i. See also the figure below the sample data for details of how the
numbering works.

Sometimes multiple connections are needed at the same time. In order to avoid interfer-
ence, each of the inputs and outputs of all switches S(j) (0 ≤ j ≤ n) can be used by at most
one connection. Given a set of connection requests, can you find connection paths for each
request such that the connection paths are disjoint?

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test
case:

• One line with two integers n (1 ≤ n ≤ 16) and m (1 ≤ m ≤ 2n): the layer of the
outermost switch and the number of connection requests.

18 Problem I: Telephone Network

• m lines, each with two integers ai and bi (0 ≤ ai, bi < 2n). Each such line represents a
connection request from input number ai of S(n) to output number bi. You may assume
that the integers ai are pairwise distinct, and the integers bi are pairwise distinct as well.

Output

Per test case:

• One line with m integers s1, . . . , sm, where si is the number of the S(0) switch through
which the connection of input ai to output bi is established.

The connection paths should be disjoint. You may print any valid solution, and you may
assume that there is at least one valid solution.

Sample in- and output

Input Output

2
1 1
0 1
3 5
0 3
1 4
2 5
3 6
4 7

0
3 0 1 2 4

0

1

2

3

4

5

6

7

I0 O0

I1 O1

I2 O2

I3 O3

I4 O4

I5 O5

I6 O6

I7 O7

A possible connection scheme for the second sample case, with used cables in bold.

Problem J: Wormly 19

J Wormly

Jonly is writing his first computer game. For the opening scene he wants to have the main
character, Wormly, cross Bridgely, the bridge. Wormly is a worm made of b equal circular
bubbles and l legs. At all times each leg has to be under one of the bubbles, and under each
bubble there can be at most one leg. Bridgely was supposed to be composed of n planks with
the width of each plank equal to the diameter of each of Wormly’s bubbles. However, some
of the planks are missing.

At every moment, Wormly can do exactly one of the following:

• Move one of its legs forward over any number of (possibly missing) planks. After the
move, the leg should be on a plank and underneath one of Wormly’s bubbles. A leg
isn’t allowed to overtake other legs.

• Move all of its bubbles forward one plank while its legs remain on the same planks.
After the move each leg must still be under one of Wormly’s bubbles.

a b c

In this example, the only possible move for the last leg is to position b. (The plank at position a is
missing, so the leg cannot move there. To get to position c, the last leg would have to overtake the first
leg.) Also, in this example, moving all the bubbles forward is not allowed because Wormly’s last leg
would end up without a bubble over it.

Now Jonly is wondering how long the animation takes until Wormly reaches the end of
Bridgely. Initially Wormly’s bubbles are directly above the leftmost b planks of the bridge and
its legs are on the leftmost l planks. At the end of the animation Wormly’s bubbles have to be
directly above the rightmost b planks and its legs have to be on the rightmost l planks.

The left- and rightmost l planks of Bridgely are not missing.

Input

On the first line a positive integer: the number of test cases, at most 100. After that per test
case:

• One line with three integers l, b and n (1 ≤ l ≤ b ≤ n ≤ 1 000 000): the number of legs,
the number of bubbles and the length of the bridge respectively.

• One line with a string consisting of n characters, either ‘0’ or ‘1’, describing Bridgely. A
one indicates a plank and a zero indicates a missing plank.

20 Problem J: Wormly

Output

Per test case:

• One line with an integer: the minimum number of steps it takes Wormly to cross Bridgely.
If it is impossible to get across while satisfying the constraints, the line must contain
“IMPOSSIBLE” instead.

Sample in- and output

Input Output

3
1 2 2
11
2 3 5
11011
1 3 5
11011

1
IMPOSSIBLE
5

